The Pell and the Poor: A Regression Discontinuity Analysis of On-Time College Enrollment

Rachel B. Rubin ASHE Conference November 19, 2010

Why is this topic important?

Biggest federal financial aid program

- The Pell Grant is considered the foundation of federal financial aid to pay college costs.
- Other federal, state, and institutional grants use Pelleligibility as the marker for eligibility

Lots of money spent on Pell Grant

 In SY2009-10, approximately \$18.8 billion was allocated to fund the Pell Grant (Mitchem, 2009).

• More education = public and private benefits

 A plethora of public and private benefits emerge from increased education, including increased income, improved individual health, more active citizenry, less welfare costs, and greater levels of happiness.

What is my research question?

Does having an *Expected Family Contribution* (*EFC*) that falls at or below the federal government cutoff for eligibility for a Pell Grant cause on-time high school graduates who have completed a Free Application for Federal Student Aid (*FAFSA*) to have a higher probability of enrolling in college on-time in comparison to students just above the cutoff?

What data do l use?

The Educational Longitudinal Study of 2002 (ELS: 2002) Key features:

- Restricted access data from the 2002, 2004, and 2006 survey years
- The most recent national, longitudinal dataset with the necessary variables to track: income, financial aid, HS completion, and college enrollment
- Stratified random sampling design
- Contains financial data from the Free application for Federal Student Aid (FAFSA)
- Weights allow for generalizing findings back to U.S. population

Who is in my sample?

- Of the 16,197 students in the original ELS:2002 dataset, 5,260 students were included in my sample
 - These students were:
 - On-time high school graduates
 - FAFSA-completers
 - Of the students in my sample, 2,239 (43%) were Pell-eligible

What are the sample's summary statistics?

- 86% of all students in my sample entered at least a two-year college the first semester after high school.
- Of those, 1,961 students (or 23%) were Pelleligible.
- Pell-eligible students, on average, are:
 - More often Black and Hispanic
 - Poorer
 - Worse prepared academically
 - Concentrated in K-12 schools with greater poverty

What measures do l use? Question Predictors:

• $CEFC_i$

- Re-centered on cut score recommended for reclassification (\$3850)
- Continuous predictor used as forcing variable (Imbens & Lemieux, 2008)
- ATORBELOW3850,
 - Dichotomous predictor (1=if EFC \leq \$3850; 0 otherwise)

Outcome:

• ONTIMECOLL_i

 Dichotomous outcome (1=enrolled fall after HS graduation PT or FT in a 2- or 4-yr school; 0 otherwise)

Covariates:

- A range of demographic, financial, academic, and peer group characteristics, as well as state controls
- This vector of covariates is represented by the symbol Z_i .

How do I answer my research question?

- Regression Discontinuity design
 - Sharp discontinuity, meaning clear cut point
 - Logistic regression model
 - Logit (ONTIMECOLL_i =1) = $B_0 + B_1 CEFC_i + B_2 ATORBELOW3850_i + B_3 CEFC_i xATORBELOW3850_i + \gamma'Z_i$

What are my preliminary findings?

- 1. Pell-eligibility status does not increase the probability that a low-income student on the margin of receiving financial aid will enroll in college on-time.
 - This is the case in uncontrolled and controlled models.
 - Pell-eligibility parameter estimates dependent on choice of analytic window, but are always small and never statistically significant.
- 2. English as a first language and higher ACT scores are significant predictors of college enrollment

How is this discontinuity illustrated?

Figure 1. Fitted Probability that an On-time High School Graduate Enrolls in College On-Time, by CEFC and Pell-Eligibility.

What are the parameter estimates for my uncontrolled model?

Table 1. Regression-discontinuity estimates of the causal impact of being at, or below, the maximum federal *EFC* value of \$3,850 versus being above the federal *EFC* value of \$3,850 on on-time college enrollment for on-time high school graduates in the United States, for several analytic-window widths around the Pell Grant cut off.

Window Width (EFC range in dollars)	Number of Students In Each Window	Predictor: ATORBELOW3850		Predictor : CEFC	Predictor: CEFCx ATORBE LOW3850	-2LL	-2LL/ Number
		Estimate	Standard Error	Estimate	Estimate	Statistic	of Students
{3700, 4000}	103	-1.35	1.86	009	.01	44.76	.435
{3550, 4150}	155	-1.06	1.25	001	007	61.78	.399
{3350, 4350}	260	04	.95	001	0002	114.01	.439
{3100, 4600}	385	43	.84	0007	.0009	173.57	.451
{2850, 4850}	496	40	.75	001	.002	250.34	.505
{2600, 5100}	623	53	.64	0007	.0004	300.97	.483
{2350, 5350}	748	22	.59	0005	.001	381.22	.510
{2100, 5600}	876	17	.53	0002	.0003	442.24	.505
{1850, 5850}	997	.025	.51	0003	.0006	529.69	.531
{1600, 6100}	1132	14	.47	0003	.0005	606.59	.536
{1350, 6350}	1261	51	.45	0006**	.0007*	703.69	.558
{1100, 6600}	1389	36	.43	0006**	.0007**	801.12	.577
{850, 6850}	1514	23	.40	0003*	.0005*	861.77	.569
{500, 7100}	1669	27	.38	0003*	.0004*	946.25	.567
{350, 7350}	1757	14	.37	0003	.0003	1001.69	.570
{100, 7600}	1912	06	.35	0003*	.0004*	1122.18	.587
{0,7700}	1922	08	.35	0003*	.0004**	1132.38	.589
Note: ~ p<.10;	p<.05; p	<.01, one-sid	ded test				

What are the parameter estimates for my controlled model?

Table 2. Taxonomy of logistic regression models that display the fitted relationship between ontime college enrollment (versus not enrolling in college on-time) and being at or below the Federal *EFC* cutoff score of \$3,850 for Pell eligibility for 997 on-time high school graduates across the United States (with a window width of 1850-5850 *EFC*), including covariates.

	Baseline M1	M2
Intercept	2.8202***	-2.438*
CEFC	-0.00025	0.0003
ATORBELOW3850	0.0254	0.6438
CEFC×ATORBELOW3850	0.0006	0.0001
Demographic Controls		
Gender		0.2831~
Race		0.0443
English as 2 nd + Language		-0.6880*
Parental education		0.0773
Financial Controls		
Contributing to others		0.0868
Family income		<-0.0001
Pell cost of attendance		0.0001
Academic Controls		
ACT scores		0.1996***
Algebra II or above		0.2292
chool and State Controls		
% FRL in high school		0.0344
State unemployment rate		0.0067
R^2	0.0026	0.0598
-2LL	529.69	768.673

Key: ~p<.10; *p<.05; **p<.01; ***p<.001

Why might these findings exist?

- FAFSA complexity and aid uncertainty may impede my ability to find an effect
 - Complexity and uncertainty lead many lowincome students who would likely be eligible for the Pell Grant to not apply (which biases my estimates downward)
- Pell amount may be too small to make a difference (minimum award = \$400)
 - Must increase the ratio of Pell funds to tuition and fees

What are avenues for future research?

- Examine the Pell as a % of college tuition/fees to determine whether grant size or % of net cost has a greater impact on low-income students' decision to enroll.
- Exploit smaller discontinuities in the Pell formula to identify the effects of the grant at varying aid amounts on low-income students' decision to enroll.
- Study whether the Pell impacts students' choice of institution.

What are limitations and potential threats to validity?

- FAFSA-completers are a small, already motivated portion of general low-income student population
- Imperfect EFC variable
 - Federal methodology
 - Institutional methodology
- Analysis does not separate Pell effects based on amount of aid award

Questions or comments?

Please contact: Rachel B. Rubin rachel_rubin@mail.harvard.edu

Thank you for your attendance and participation!

Appendix A: Sample Statistics

Graduates			
	Federal $EFC \leq$	Federal EFC >	
	\$3,850 (n=2239)	\$3,850 (n=3021)	
Demographics			
Male	.401	.458	
White	.432	.738	
Black	.218	.064	
Asian	.141	.076	
Hispanic/Latino	.153	.071	
Other Race	.013	.007	
English is Second+ Language	.745	.923	
Parental Education			
Some high school	.078	.009	
High school graduate	.223	.095	
Some college	.364	.294	
College graduate	.206	.315	
Advanced degree	.128	.285	
Academic Preparation			
GPA (0.01-2.00)	.091	.027	
GPA (2.01-3.00)	.411	.285	
GPA (3.01-4.00)	.681	.827	
Highest math Algebra II or above	.840	.931	
Other			
High School 0-30% FRPL	.648	.868	
High School 31-75% FRPL	.273	.121	
High School 76-100% FRPL	.079	.012	
Contributes to others' finances	.180	.054	

 Table 3. Sample Descriptive Statistics by Pell-eligibility for 5,260 On-time High School

 Graduates

Source: Educational Longitudinal Study of 2002

Appendix B: Characteristics of Students' Higher Education Institutions

Table 4. Characteristics of first higher education institution attended by Pell-eligibility status for on-time college enrollees (n=5260).

	Pell Ineligible	Pell Eligible	Total
Public, 4-yr +	1481 (63%)	881 (37%)	2362 (45%)
Private, not-for-profit, 4-yr +	855 (68%)	397 (32%)	1252 (24%)
Private, for-profit, 4-yr +	34 (43%)	45 (57%)	79 (2%)
Public, 2-yr	597 (42%)	814 (58%)	1411 (27%)
Private, not-for-profit, 2-yr	14 (54%)	12 (46%)	26 (<1%)
Private, for-profit, 2-yr	31 (34%)	60 (66%)	91 (<1%)
Highly selective, 4-yr	975 (75%)	324 (25%)	1299 (25%)
Moderately selective, 4-yr	1080 (64%)	618 (36%)	1698 (32%)
Inclusive, 4-yr	191 (43%)	254 (57%)	445 (8%)
Selectivity not classified	774 (43%)	1042 (57%)	1816 (35%)
Open admissions	672 (41%)	967 (59%)	1639 (31%)

References

- Astin, A. W., and Oseguera, L. (2005) Degree attainment among Latino undergraduates: Rethinking time to degree. Berkeley: California Policy Research Institute. UC Latino Policy Institute.
- Astin, A. W., Tsui, L., & Avalos, J. (1996). Degree attainment rates at American colleges and universities: Effects of race, gender, and institutional type. Los Angeles: Higher Education Research Institute, UCLA.
- Bettinger, Eric. (2004). "How Financial Aid Affects Persistence," In *College Choices: The Economics of Where to Go, When to Go, and How to Pay for It,* edited by Caroline Hoxby, 207-238. Chicago: University of Chicago Press.
- Cabrera, A. F., Burkum, K. R., & La Nasa, S. M. (2004). Pathways to a four-year degree: Determinants of transfer and degree completion. In A. Seidman, College student retention: A formula for student success. Westport: ACE/Praeger series on Higher Education.
- College Board. (2009). <u>http://www.collegeboard.com/student/pay/scholarships-and-aid/36318.html</u>. Retrieved August 2, 2009.
- Department of Education (2009). Retrieved August 2, 2009. <u>http://studentaid.ed.gov/PORTALSWebApp/students/english/PELLGrants.jsp</u>

- DesJardins, S. L., Ahlburg, D. A., and McCall, B. P. (2002). A temporal investigation of factors related to timely degree completion. Journal of Higher Education 73(5): 555–581.
- Dynarski, S. M., and Scott-Clayton, J.E. (2008). "Complexity and Targeting in Federal Student Aid: A Quantitative Analysis." NBER Working Paper 13801, National Bureau of Economic Research, Inc.
- Dynarski, S. M.(2003). "Does Aid Matter? Measuring the Effect of Student Aid on College Attendance and Completion." *American Economic Review* 93(1) March: 279-288.
- Dynarski, S. M., and Scott-Clayton, J.E. (2007). "Pell Grants on a Postcard: A Proposal for Simple and Predictable Federal Student Aid." Hamilton Project Discussion Paper.
- Ehrenberg, R. G. and Sherman, D. R. (1984). "Optimal Financial Aid Policies for a Selective University." NBER Working Paper 1014, National Bureau of Economic Research, Inc.
- Elkins, S. A., Braxton, J. M., & James, G.W. (2000). *Tinto's separation stage and its influence on first semester college student persistence.* Research in Higher Education, 41(2), 251268.

- Goenner, C., and Snaith, S. (2004). Accounting for model uncertainty in the prediction of university graduation rates. Research in Higher Education, 45(1), 2541.
- Hamrick, F. A., Schuh, J.H., and Shelley II., M.C. (2004). *Predicting higher education graduation rates from institutional characteristics and resource allocation.* Education Policy Analysis. 12 (19) May 4.
- Hansen, W. L. (1983). "The Impact of Student Financial Aid on Access." In *The Crisis in Higher Education,* edited by Joseph Froomkin. New York: Academy of Political Science.
- Imbens, G., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. *Journal of Econometrics, 142*(2), 615-35.
- Kane, Thomas J. (1999). *The Price of Admission: Rethinking how Americans pay for College.* Washington, DC: The Brookings Institution Press.
- Kane, Thomas J. (2003). "A Quasi-Experimental Estimate of the Impact of Financial Aid on College- Going." NBER Working Paper 9703, National Bureau of Economic Research, Inc.
- King, Jacqueline (2006). *Gender Equity in Higher Education.* The American Council on Education.

- Lee and Lemieux, (2009). Regression Discontinuity Designs in Economics. National Bureau of Economic Research. Working Paper 14723.
- Leslie, L.L. and Brinkman, P.T. (1987). "Student Price Response in Higher Education." *Journal of Higher Education*. 58(2). 181-204.
- Morrison, M.C. 2006. Structural Determinants of Graduation Rates: A Causal Analysis. Online Submission.
- Murtaugh, P. A., Burns, L. D., & Schuster, J. (1999). *Predicting the retention of university students.* Research in Higher Education, 40, 355371.
- Muraskin, L., & Lee, J. (2004). Raising the graduation rates of low income college students. Washington, DC: The Pell Institute for the Study of Opportunity in Higher Education.
- Nora A. and Castaneda, M. (1993). College persistence: Structural equations modeling test of an integrated model of student retention. Journal of High Education, 64, 123139.
- Oseguera, L. (2005). Four and sixyear baccalaureate degree completion by institutional characteristics and racial/ethnic groups. Journal of College Student Retention, 7(12),1959.

- Pascarella, E. T., and Terenzini, P. T. (1998). *Studying college students in the 21st century: Meeting new challenges.* The Review of Higher Education, 21, 151165.
- Seftor, N. and Turner, S. (2002). "Back to School: Federal Student Aid Policy and Adult College Enrollment." *Journal of Human Resources* 37(2) 336-352.
- Stedman, J. B. (2003). *Federal Pell Grant Program of the Higher Education Act: Background and Reauthorization.* Congressional Research Service Report for Congress, Order Code RL31668.
- Van der Klaauw, W. (1997). A regression discontinuity evaluation of the effects of financial aid offers on college enrollment. Economic Research Reports, 97-10.
- Walker, S. (2005). *An Overview of the PELL Institute Report on Improving Graduation Rates of Low-Income College Students.* Office of Strategic Research and Analysis. Board of Regents of the University System of Georgia.
- Wei, C., & Horn, L. (2002). Persistence and attainment of beginning students with Pell grants. NCES 2002-169, Washington, DC.
- Wei, C., Horn, L, and Weko, T. (2009). *Profile of Successful PELL Grant Recipients: Time to Bachelor's Degree and Early Graduate School Enrollment Statistical Analysis Report.*